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We search for charged massive stable particles using 1.1 fb~! of data collected by the DO detector
at the Fermilab Tevatron pp Collider. Time-of-flight information is used to search for pair produced
stable tau sleptons, gaugino-like charginos, and higgsino-like charginos. We find no evidence of a
signal and set 95% C.L. cross section upper limits for staus, which vary from 0.31 pb to 0.04 pb for
stau masses between 60 GeV and 300 GeV. We also set lower mass limits of 206 GeV (171 GeV) for

pair produced charged gauginos (higgsinos).

PACS numbers: 13.85RM,14.80Ly



Charged massive stable particles, or CMSPs, are
predicted by several extensions of the standard model
(SM). The term “stable” in this context refers to particles
that live long enough to escape the DO detector [1]
before decaying. The lightest tau slepton, or stau,
is an example of such a particle, and is predicted
in some Gauge Mediated Supersymmetry Breaking
(GMSB) models [2]. If the stau decay is sufficiently
suppressed, then the stau will be a CMSP candidate. The
lightest chargino is another example of a CMSP. Anomaly
Mediated Supersymmetry Breaking (AMSB) models [3]
or supersymmetric models that do not have gaugino mass
unification can predict a long lifetime for the lightest
chargino if its mass is within about 150 MeV of the
lightest neutralino mass [4]. We explore two extreme
cases, one where the chargino is mostly higgsino and one
where it is mostly gaugino.

Several collider experiments have performed searches
for CMSPs. Studies at the CERN eTe™ Collider (LEP)
have resulted in lower mass limits of 97.5 GeV for stable
sleptons [5], and 103.5 GeV for stable charginos [6]. A
CDF Tevatron Run I search set a cross section limit of
O(1) pb for stable sleptons [7]. Complementary searches
for neutral weakly interacting massive particles (WIMPs)
have also been performed by underground dark matter
experiments [8].

In this Letter, we present a search for pair produced
CMSPs exploiting the fact that the detector signature
of pair produced CMSPs is rather striking. These
weakly interacting particles are expected to traverse the
entire DO detector, and should register in its outermost
muon system. Additionally, owing to their large mass,
these particles will travel substantially slower than beam
produced muons, which travel near the speed of light.

Data used in this analysis were collected with the DO
detector at the Fermilab Tevatron pp Collider at /s =
1.96 TeV between 2002 and 2006. They correspond to
1.1 b~ of integrated luminosity.

The DO detector [1] is a multi-purpose detector well
suited to a wide range of searches for new phenomena.
The main components of the detector are an inner
tracker, a liquid argon and uranium calorimeter, and
a muon system. The inner tracker consists of a
silicon microstrip detector (SMT) close to the beam line
surrounded by a scintillating fiber detector. The muon
system [9] resides beyond the calorimetry and consists
of a layer of tracking detectors and scintillation trigger
counters in front of 1.8 T iron toroids, followed by two
similar layers after the toroids. Muon reconstruction
at pseudorapidities [10] |n| < 1 relies on 10 cm wide
drift tubes, while 1 cm mini-drift tubes are used at
1 < |n| < 2. Each scintillation counter registers a passing
muon’s time, which can be used to calculate its speed.

The DO detector uses a three-level trigger system to
select data for offline analysis. CMSPs would appear
as muons to the trigger system, so di-muon triggers were

used to collect data for this analysis; and we use the term
“muon” to refer to both real muons and CMSPs. Indeed,
CMSPs are not distinguished from muons throughout the
standard data collection and reconstruction, unless by
virtue of their slow speed they arrive outside a muon
trigger timing gate. The efficiency of the trigger gates is
included in the calculated signal acceptance.

Muon candidates are reconstructed by finding tracks
pointing to hit patterns in the muon system. We
select events with exactly two muons, each of which
satisfies quality criteria based on scintillator and drift
tube information from the muon system and matches a
track in the inner tracker. The muon candidates are
also required to have transverse momenta, pr, greater
than 20 GeV, as measured with the central tracker.
Events with muons from meson decays and other non-
isolated muons are rejected by applying the following
isolation criteria. At least one muon must have the
sum of the pr of all other tracks in a cone of radius
R =/ (A¢)? + (An)? < 0.5 around the muon direction
less than 2.5 GeV. A similar isolation condition is
applied for the total transverse energy measured in the
calorimeter cells in a hollow cone of radius 0.1 < R < 0.4
around the muon direction; this energy must be less than
2.5 GeV.

A cosmic ray muon that passes through the detector
can be reconstructed as two collinear muons. To reject
these events, we require that the two muons must satisfy
the pseudo-acolinearity requirement Aay, = |A¢,, +
AG,,,—2m| > 0.05. Moreover, since cosmic rays can arrive
at times not correlated with the beam crossing, they
can be mis-identified as slow-moving particles. We also
employ timing cuts which distinguish between outward
going muons and inward traveling cosmic rays.

Two additional criteria are applied to reduce the
background from muon candidates that do not originate
from the primary vertex, such as those from cosmic
rays, b decays, and beam halo. The distance of closest
approach to the beam line (DCA), as measured in the
transverse plane, for the track matched to the muon must
be less than 0.02 cm for tracks with hits in the SMT and
less than 0.2 cm for tracks without SMT hits. Finally,
the difference in the z coordinates of the two muons at
their DCAs is required to be less than 3 cm.

We determine the total signal acceptance using
a combination of information from Monte Carlo
(MC) simulation and the data. Signal samples for
CMSP masses ranging between 60 and 300 GeV were
generated with PYTHIA [11] using CTEQ6.1L [12] parton
distribution functions (PDF), and processed with a
GEANT [13]-based simulation of the DO detector. These
samples were reconstructed with the same software as the
data. The specific model used for the stable stau is model
line D in Ref. [14]. For gaugino-like and higgsino-like
stable charginos, the specific models use the parameters
described in Ref. [15].



For each scintillator layer in which the reconstructed
muon has a hit, the speed of this muon is calculated and
expressed in units of the speed of light. The average
speed v is then obtained by taking the weighted average
of the individual layer speeds. To ensure that the
registered times in the muon detector are consistent, we
compute a speed x2? from the individual layer speeds
and their uncertainties. We require this x2/d.o.f. to be
less than 4.7, a value derived from Z — pTu~ data.
The transverse momenta of the pair produced CMSPs
are expected to be approximately equal, and higher
than those of beam produced muons. To reject tracks
with poorly measured momentum, we require that the
absolute value of the difference over the sum of the py of
the two muon candidates in the event be less than 0.68,
a value that is also derived using Z — u*u~ data.

Speed significance, defined as (1 — ©)/o5, is used to
distinguish slow-moving particles from near light-speed
muons. Here o5 is the uncertainty in the average speed
v. We require that both candidate particles in the event
should have positive speed significance.

In addition to time-of-flight, we use the invariant
mass formed from the pair of muon candidates to
separate signal events from background. We calculate
the invariant mass assuming the mass of each particle is
that of a muon.

The only SM background for this search comes
from events which have, due to imperfect detector
performance, anomalously large time-of-flight or mis-
measured pr that satisfy the selection criteria. Each
of these measurements is independent of the other,
since the pr of the particle is measured in the central
tracking system and the time-of-flight is recorded in the
muon detector. Consequently, background events can
be simulated by combining separate distributions of the
invariant mass and of the speed significance product (the
product of the values of speed significance of the two
muon candidates). Events which pass all the selection
criteria and have an invariant mass within the Z mass
peak region (between 70 GeV and 110 GeV) are used
to model the speed significance product distribution for
the background. The invariant mass distribution for the
background is estimated from data events that pass the
selection criteria but have muon candidates with negative
speed significance. Background events are then simulated
by choosing a random value from each of the above two
distributions, the invariant mass and the speed signif-
icance product, and are normalized to the number of data
events passing the selection criteria. The background
and MC signal samples have very different distributions,
as indicated in Fig. 1. They are combined using a
joint likelihood to discriminate between background and
signal. The likelihood discriminant cut values are chosen
for each point by minimizing the expected 95% C.L.
upper limit on the cross section calculated with a
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FIG. 1: Distributions of (a) the invariant mass and (b) speed
significance product, for the simulated background (solid line)
and stau signal (dotted line) with a mass of 300 GeV.

Bayesian limit method assuming a flat prior [16].

The signal acceptance, predicted number of
background events, and the number of observed events
are summarized in Table I for staus and charginos. The
three models studied have different signal acceptances,
reflecting the different CMSP kinematics of each model.
The number of the observed events is consistent with
the predicted background. A 95% C.L. upper limit on
the pair production cross section is set for each mass
point for the three models.

The systematic uncertainties in the background
estimation arise mainly from the choice of the
data events, whose invariant mass and speed signif-
icance product distributions are used to simulate the
background. @ We varied the criteria used to select
the data events, and the resulting difference in the
predicted number of background events is taken as the
size of the systematic uncertainty. The main signal
acceptance uncertainties are those in object identification
efficiencies, trigger efficiencies, MC simulation normal-
izations, and uncertainties related to the choice of PDF.

The masses and couplings are computed by
SOFTSUSY [17], and the next-to-leading order (NLO)
cross section is calculated with PROSPINO2.0 [18]. The
renormalization and factorization scale uncertainty and
the PDF uncertainty are added in quadrature to obtain
the total uncertainty on the signal cross section. The
calculated expected and observed limits, the NLO cross
section and the uncertainty on the cross section are



Mass Signal Predicted Observed
(GeV) Acceptance Background Events
(a) stau
60  0.064 £0.001 £0.005 309+£22+19 38

80 0.038£0.001 £0.005 2.6£0.6+0.4 1
100  0.056 £+ 0.001 £ 0.004 1.6+0.5£0.3 1
150  0.123 £ 0.002 £ 0.013 1.7+ 0.5£0.2 1
200 0.139 £0.002 £ 0.011 1.7+ 0.5£0.5 1
250 0.133 £0.002 £ 0.013 1.7+0.5£0.3 1
300 0.117£0.002 £ 0.013 1.9+0.5+£0.2 2

(b) gaugino-like charginos
60 0.032+£0.001 £0.003 23.6+£19+14 24
80  0.024 £ 0.001 £ 0.003 1.94+0.5+£0.3 1
100 0.046 £ 0.001 £ 0.004 1.6+0.5£0.3 1
150  0.085 £ 0.001 £ 0.009 1.2£04+£0.1 1
200 0.089 £ 0.001 £+ 0.007 1.94+0.5£0.0 1
250 0.074 £ 0.001 £ 0.007 1.7£0.5+0.3 1
300 0.059 £ 0.001 £+ 0.007 1.7+0.5+£0.1 2

(c) higgsino-like charginos

60 0.029 £0.001 £0.002 179+£1.7+1.1 21
80  0.024 £ 0.001 £ 0.003 1.6£0.5+£0.3 1
100 0.049 £0.001 £0.004 1.6£0.5+0.3 1
150  0.089 £ 0.001 £ 0.009 1.4£05+0.1 1
200  0.096 £ 0.001 £ 0.008 1.9£0.5+0.0 1
250  0.081 £ 0.001 £ 0.008 1.7£05+0.3 1
300 0.064 +£0.001 £0.007 1.7£0.5£0.1 1

TABLE I: Signal acceptance, predicted number of background
events and number of observed events for (a) staus,
(b) gaugino-like charginos and (c) higgsino-like charginos
searches, as a function of the CMSP mass. The first
uncertainty is statistical and the second is systematic.

shown in Fig. 2 for varying stau and chargino masses.
Using the nominal (nominal — 1¢) values of the NLO
cross section, lower mass limits of 206 (204) GeV
at 95% C.L. are set for gaugino-like charginos. For
higgsino-like charginos the limits are 171 (169) GeV.

In summary, we have performed a search for charged
massive stable particles using 1.1 fb~! of data collected
by the DO detector. We find no evidence of a signal and
set 95% C.L. cross section limits on the pair production of
stable staus and gaugino-like and higgsino-like charginos.
The upper cross section limits vary from 0.31 pb to
0.04 pb for stau masses in the range 60-300 GeV. We
use the nominal value of the theoretical cross section to
set limits on the mass of pair produced charginos. We
exclude stable gaugino-like charginos with masses below
206 GeV and higgsino-like charginos below 171 GeV.
These are the most restrictive limits to date on the cross
sections for CMSPs and the first published from the
Tevatron Collider Run II.

We thank the staffs at Fermilab and collaborating
institutions, and acknowledge support from the DOE
and NSF (USA); CEA and CNRS/IN2P3 (France);
FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ,
FAPESP and FUNDUNESP (Brazil); DAE and DST
(India); Colciencias (Colombia); CONACyT (Mexico);

KRF and KOSEF (Korea); CONICET and UBACyT
(Argentina); FOM (The Netherlands); STFC (United
Kingdom); MSMT and GACR (Czech Republic); CRC
Program, CFI, NSERC and WestGrid Project (Canada);
BMBF and DFG (Germany); SFI (Ireland); The
Swedish Research Council (Sweden); CAS and CNSF
(China); and the Alexander von Humboldt Foundation
(Germany).

[a] Visitor from Augustana College, Sioux Falls, SD, USA.

[b] Visitor from The University of Liverpool, Liverpool, UK.

[c] Visitor from Rutgers University, Piscataway, NJ, USA.

[d] Visitor from II. Physikalisches Institut, Georg-August-
University, Gottingen, Germany.

[e] Visitor from Centro de Investigacion en Computacion -
IPN, Mexico City, Mexico.

[f] Visitor from ECFM, Universidad Autonoma de Sinaloa,
Culiacan, Mexico.

[g] Visitor from Helsinki Institute of Physics, Helsinki,
Finland.

[h] Visitor from Universitdt Bern, Bern, Switzerland.

[i] Visitor from Universitat Ziirich, Zirich, Switzerland.

[1] Deceased.

[1] DO Collaboration, V. Abazov et al, Nucl. Instrum.
Methods Phys. Res. Sect. A 565, 463 (2006).
[2] G. F. Giudice and R. Rattazzi, Phys. Rep. 322, 419

(1999).

[3] J. Gunion and S. Mrenna, Phys. Rev. D 62, 015002
(2000).

[4] C. Chen, M. Drees, and J. Gunion, Phys. Rev. D 55, 330
(1997).

[5] LEPSUSYWG, ALEPH, DELPHI, L3, and
OPAL  experiments, note LEPSUSYWG/02-09.2,

http:://lepsusy.web.cern.ch/lepsusy/www/gmsb_
summer02/lepgmsb.html.

[6] LEPSUSYWG, ALEPH, DELPHI, L3 and
OPAL  experiments, note LEPSUSYWG/02-04.1,
http:://lepsusy.web.cern.ch/lepsusy/www/
inoslowdmsummerOQ/charginolowdm_pub .html.

[7] CDF Collaboration, D. Acosta et al., Phys. Rev. Lett.
90, 131801 (2003).

[8] R. J. Gaitskell, Ann. Rev. Nuc. Sci. 54, 315 (2004).

[9] V. Abazov et al., Nucl. Instrum. Methods Phys. Res.
Sect. A 552, 372 (2005).

[10] The DO coordinate system is cylindrical with the z—axis
along the proton beam direction and the polar and
azimuthal angles denoted as 6 and ¢ respectively. The
pseudorapidity is defined as n = — In[tan(6/2)].

[11] T. Sjostrand et al., Computer Physics Commun. 135,
238 (2001). We use PYTHIA 6.323.

[12] CTEQ Collaboration, J. Pumplin et al., J. High Energy
Phys. 0207, 012 (2002).

[13] R. Brun et al., CERN Program Library Long Writeup
W5013 (1993).

[14] S. P. Martin, S. Moretti, J. Qian, and G. W. Wilson,
eConf C010630, P346 (2001).

[15] DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C
11, 1 (1999).

[16] I. Bertram et al., Fermilab-TM-2104 (2000).



Cross section [pb]

-
=)
S

<
/

(@ D@ 1.1 b’

®  Observed Cross Section Limit
Expected Cross Section Limit
— = NLO Cross Section Prediction

NLO Cross Section Uncertainty
~N
N
~

Cross section [pb]

DO 1.1 fb'

®  Observed Cross Section Limit
Expected Cross Section Limit
— — NLO Cross Section Prediction

NLO Cross Section Uncertainty

-
o

-
I

N

Cross section [pb]
Q

-
=)
N

D@ 1.1 '
®  Observed Cross Section Limit
Expected Cross Section Limit
— — NLO Cross Section Prediction
NLO Cross Section Uncertainty

B
50 100 150 200 250 300

Mass [GeV]

[17] B. C. Allanach, Computer Physics Commun. 143, 305

(2002).

150 200 250 300

Mass [GeV]

-

=)
o
1<}

P
150 200 250 300
Mass [GeV]

FIG. 2: The observed (dots) and expected (solid line) 95% cross section limits, the NLO production cross section (dashed line),
and NLO cross section uncertainty (barely visible shaded band) as a function of (a) stau mass for stau pair production, (b)
chargino mass for pair produced gaugino-like charginos, and (c) chargino mass for pair produced higgsino-like charginos.

[18] W. Beenakker et al., Phys. Rev. Lett. 8, 3780 (1999).



